238 research outputs found

    A First Approach on Modelling Staff Proactiveness in Retail Simulation Models

    Get PDF
    There has been a noticeable shift in the relative composition of the industry in the developed countries in recent years; manufacturing is decreasing while the service sector is becoming more important. However, currently most simulation models for investigating service systems are still built in the same way as manufacturing simulation models, using a process-oriented world view, i.e. they model the flow of passive entities through a system. These kinds of models allow studying aspects of operational management but are not well suited for studying the dynamics that appear in service systems due to human behaviour. For these kinds of studies we require tools that allow modelling the system and entities using an object-oriented world view, where intelligent objects serve as abstract \'actors\' that are goal directed and can behave proactively. In our work we combine process-oriented discrete event simulation modelling and object-oriented agent based simulation modelling to investigate the impact of people management practices on retail productivity. In this paper, we reveal in a series of experiments what impact considering proactivity can have on the output accuracy of simulation models of human centric systems. The model and data we use for this investigation are based on a case study in a UK department store. We show that considering proactivity positively influences the validity of these kinds of models and therefore allows analysts to make better recommendations regarding strategies to apply people management practices.Retail Performance, Management Practices, Proactive Behaviour, Service Experience, Agent-Based Modelling, Simulation

    A three-dimensional model of residential energy consumer archetypes for local energy policy design in the UK

    Get PDF
    This paper reviews major studies in three traditional lines of research in residential energy consumption in the UK, i.e. economic/infrastructure, behaviour, and load profiling. Based on the review the paper proposes a three-dimensional model for archetyping residential energy consumers in the UK by considering property energy efficiency levels, the greenness of household behaviour of using energy, and the duration of property daytime occupancy. With the proposed model, eight archetypes of residential energy consumers in the UK have been identified. They are: pioneer greens, follower greens, concerned greens, home stayers, unconscientious wasters, regular wasters, daytime wasters, and disengaged wasters. Using a case study, these archetypes of residential energy consumers demonstrate the robustness of the 3-D model in aiding local energy policy/intervention design in the UK

    Introduction to Multi-Agent Simulation

    Get PDF
    When designing systems that are complex, dynamic and stochastic in nature, simulation is generally recognised as one of the best design support technologies, and a valuable aid in the strategic and tactical decision making process. A simulation model consists of a set of rules that define how a system changes over time, given its current state. Unlike analytical models, a simulation model is not solved but is run and the changes of system states can be observed at any point in time. This provides an insight into system dynamics rather than just predicting the output of a system based on specific inputs. Simulation is not a decision making tool but a decision support tool, allowing better informed decisions to be made. Due to the complexity of the real world, a simulation model can only be an approximation of the target system. The essence of the art of simulation modelling is abstraction and simplification. Only those characteristics that are important for the study and analysis of the target system should be included in the simulation model. The purpose of simulation is either to better understand the operation of a target system, or to make predictions about a target system’s performance. It can be viewed as an artificial white-room which allows one to gain insight but also to test new theories and practices without disrupting the daily routine of the focal organisation. What you can expect to gain from a simulation study is very well summarised by FIRMA (2000). His idea is that if the theory that has been framed about the target system holds, and if this theory has been adequately translated into a computer model this would allow you to answer some of the following questions: · Which kind of behaviour can be expected under arbitrarily given parameter combinations and initial conditions? · Which kind of behaviour will a given target system display in the future? · Which state will the target system reach in the future? The required accuracy of the simulation model very much depends on the type of question one is trying to answer. In order to be able to respond to the first question the simulation model needs to be an explanatory model. This requires less data accuracy. In comparison, the simulation model required to answer the latter two questions has to be predictive in nature and therefore needs highly accurate input data to achieve credible outputs. These predictions involve showing trends, rather than giving precise and absolute predictions of the target system performance. The numerical results of a simulation experiment on their own are most often not very useful and need to be rigorously analysed with statistical methods. These results then need to be considered in the context of the real system and interpreted in a qualitative way to make meaningful recommendations or compile best practice guidelines. One needs a good working knowledge about the behaviour of the real system to be able to fully exploit the understanding gained from simulation experiments. The goal of this chapter is to brace the newcomer to the topic of what we think is a valuable asset to the toolset of analysts and decision makers. We will give you a summary of information we have gathered from the literature and of the experiences that we have made first hand during the last five years, whilst obtaining a better understanding of this exciting technology. We hope that this will help you to avoid some pitfalls that we have unwittingly encountered. Section 2 is an introduction to the different types of simulation used in Operational Research and Management Science with a clear focus on agent-based simulation. In Section 3 we outline the theoretical background of multi-agent systems and their elements to prepare you for Section 4 where we discuss how to develop a multi-agent simulation model. Section 5 outlines a simple example of a multi-agent system. Section 6 provides a collection of resources for further studies and finally in Section 7 we will conclude the chapter with a short summary

    A first approach on modelling staff proactiveness in retail simulation models

    Get PDF
    There has been a noticeable shift in the relative composition of the industry in the developed countries in recent years; manufacturing is decreasing while the service sector is becoming more important. However, currently most simulation models for investigating service systems are still built in the same way as manufacturing simulation models, using a process-oriented world view, i.e. they model the flow of passive entities through a system. These kinds of models allow studying aspects of operational management but are not well suited for studying the dynamics that appear in service systems due to human behaviour. For these kinds of studies we require tools that allow modelling the system and entities using an object-oriented world view, where intelligent objects serve as abstract “actors” that are goal directed and can behave proactively. In our work we combine process-oriented discrete event simulation modelling and object-oriented agent based simulation modelling to investigate the impact of people management practices on retail productivity. In this paper, we reveal in a series of experiments what impact considering proactivity can have on the output accuracy of simulation models of human centric systems. The model and data we use for this investigation are based on a case study in a UK department store. We show that considering proactivity positively influences the validity of these kinds of models and therefore allows analysts to make better recommendations regarding strategies to apply people management practises

    Introduction to Multi-Agent Simulation

    Get PDF
    When designing systems that are complex, dynamic and stochastic in nature, simulation is generally recognised as one of the best design support technologies, and a valuable aid in the strategic and tactical decision making process. A simulation model consists of a set of rules that define how a system changes over time, given its current state. Unlike analytical models, a simulation model is not solved but is run and the changes of system states can be observed at any point in time. This provides an insight into system dynamics rather than just predicting the output of a system based on specific inputs. Simulation is not a decision making tool but a decision support tool, allowing better informed decisions to be made. Due to the complexity of the real world, a simulation model can only be an approximation of the target system. The essence of the art of simulation modelling is abstraction and simplification. Only those characteristics that are important for the study and analysis of the target system should be included in the simulation model

    Towards the Development of a Simulator for Investigating the Impact of People Management Practices on Retail Performance

    Get PDF
    Often models for understanding the impact of management practices on retail performance are developed under the assumption of stability, equilibrium and linearity, whereas retail operations are considered in reality to be dynamic, non-linear and complex. Alternatively, discrete event and agent-based modelling are approaches that allow the development of simulation models of heterogeneous non-equilibrium systems for testing out different scenarios. When developing simulation models one has to abstract and simplify from the real world, which means that one has to try and capture the 'essence' of the system required for developing a representation of the mechanisms that drive the progression in the real system. Simulation models can be developed at different levels of abstraction. To know the appropriate level of abstraction for a specific application is often more of an art than a science. We have developed a retail branch simulation model to investigate which level of model accuracy is required for such a model to obtain meaningful results for practitioners.Comment: 24 pages, 7 figures, 6 tables, Journal of Simulation 201
    corecore